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Abst rac t
Infections caused by viral and bacterial pathogens are typically perceived as harmful, such as in cases of herpes zoster 
and herpes simplex virus infections. However, clinical observation of an improvement in atopic skin lesions upon her-
pes virus infection has been noted, particularly at the site of varicella and Kaposi’s varicelliform eruption. Th1 immune 
cells and cytokines, mobilized and induced for protection against infectious pathogens, are expected to improve Th2 
dominant atopic symptoms. This study focuses on Th1 immunoregulatory events mediated by infectious pathogens, 
particularly herpes viruses. Immunoregulatory events induced by herpes viruses may have a potential therapeutic 
value for treating atopic eczema.
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Introduction

Infections by pathogens, such as viruses and bacte-
ria, are typically perceived as harmful, such as in cases 
of herpes (varicella) zoster [1] and herpes simplex virus 
infections [2]. The herpes (HZV) or varicella zoster virus 
(VZV) [3], which is a member of the a-herpesviridae sub-
family, comprising a polyhedral capsid surrounded by 
a membranous envelope structure (Figure 1) [3], and 
is one of eight herpes viruses known to infect humans. 
It causes varicella (chickenpox) (Figure 1) [1], a disease 
most commonly affecting children, teenagers, and young 
adults, and herpes zoster (HZ) in adults, particularly the 
elderly. Herpes simplex viruses (HSV) [4] are categorized 
into two types: herpes type 1 (HSV-1, or oral herpes), is 
also a member of the a-herpesviridae subfamily, and its 
structure is composed of linear dsDNA, an icosahedral 
capsid with a spikey envelope (Figure 1) [4], and herpes 
type 2 (HSV-2, or genital herpes). Kaposi’s varicelliform 
eruption (VE), eczema herpeticum (Figure 1) [5], is a rare 
but severe disseminated infection, predominantly found 
accompanying HSV infections. It generally occurs at sites 
of skin damage [6], such as eczema, particularly, in se-
vere atopic dermatitis (AD), occurring in about 3% of AD 
patients [5], long-term external use of steroids, or occa-
sionally burns.

AD [7] is a complex pathology mainly characterized 
by immune response dysfunction [8], T helper type (Th)2 
dominant conditions [9], overexpression of Th2 cytokines 
such as interleukin (IL)-4 and IL-13, which play a key role 
in type 2 inflammation [10], and lower interferon-γ (IFN-γ) 
protein production is also significant [11], as downregula-
tion of Th1 [12] but lesional skin also shows a mixed type-1  
and type-2 immune responsiveness [13]. AD patients 
also exhibit unbalanced dysbiosis of skin microbiota 
characterized by Staphylococcus aureus colonization [14, 
15], an increased risk of developing bacterial and viral 
infections with a suspected low production of the anti-
microbial peptide cathelicidin [16], and impairment of the 
skin barrier such as a deficit in filaggrin [5, 16]. These are 
deemed to be defects in functions of immune cells [17] 
such as dendritic cells (DC), natural killer (NK) cells, and 
regulatory T cells (Tregs) [18, 19]; in particular, the func-
tion of Tregs, which are responsible for initial response 
to infection [20], is important in these virus infections 
which play a pivotal role in immune regulation and are 
integral to the control of allergic responses [21]. Potential 
treatments can be designed to amplify these cells to sup-
press the allergic inflammatory cascade in AD [21]. Atopic 
conditions are aggravated as a result of insufficient IL-12 
production by DCs [22]. Acquired functional impairment 
of Tregs in AD patients and the correlation between the 
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increased frequency of Tregs and disease severity sup-
port their important role in AD pathogenesis [23].

Alternatively, clinical observation of an improvement 
in severe atopic skin lesions after the onset of varicella 
has been noted [24], the improved state continued for at 
least 2 to 3 months and up to 5 to 6 months. In my daily 
dermatological practice, the author has occasionally ob-
served improvements associated with HZV or HSV infec-
tions, especially in those with Kaposi’s VE (eczema herpe-
ticum) in AD patients. I have earlier reported remarkable 
improvement in the eczematous lesions of both axillar 
regions that caused Kaposi’s VE in an elderly patient [25] 
with senile atopy and a secondary erythroderma due 
to a predisposition to atopy. It took considerably longer 
for skin lesions at other sites to heal. So far, the author 
has noted that protective responses to these infectious 
agents are expected to improve atopic eczema. Based on 
these clinical observations, this study focuses on Th1 im-
munoregulatory events caused by infectious pathogens, 
particularly herpes viruses.

Immunoregulatory events in HZV infection

Varicella (Figure 1) is a primary infection of VZV, which 
becomes latent in the peripheral ganglia [1]. However, de-
clining T cell immunity [26] in ageing individuals or those 
undergoing immune restrictive treatments can lead to 
VZV reactivation and the development of herpes zoster 
(Figure 1) [1]. Varicella immunization can provide the op-
portunity to analyse the kinetics of IL-10, IL-12, and IFN-γ 
production [27] elicited during primary in vivo sensitiza-
tion with VZV proteins [28]. VZV antigens on infected 
cells may be processed by monocytes for presentation 
to T cells [29]. In our previous reports, we found that 
monocytosis [30, 31], suggested as part of the defence 
against infection, was observed in the leukocyte fraction 
of the peripheral blood, which is typically composed of 
2–10% of all leukocytes in the human body. Monocytes 
play a role with their diverse functional properties to 
protect infection in mobilizing dendritic cells (DCs) [32]. 
Monocytes derived from DCs, which are recruited dur-
ing infection defence, produce large amounts of IL-12 
[33]. Monocytes serve multiple roles in immune func-
tion and are the largest type of leukocyte and can dif-
ferentiate into macrophages and myeloid lineage DCs, 
characterized by a high level expression of the CD14 cell 
surface receptor (CD14+ CD16++ monocyte) [34]. CD14 
[35] is a human monocyte differentiation antigen as 
the Toll-like co-receptor for the detection of pathogen-
associated molecular patterns. After stimulation with 
microbial products, the CD14+CD16++ monocytes [34] 
produce high amounts of pro-inflammatory cytokines 
like tumour necrosis factor (TNF) and IL-12. IFN-γ is also 
released upon activation of Th1 NK cells [36], which take 
the role of the innate immune defence against infection 
[37], during protection against viral infections. It is as-

sumed that Th1 induction is involved in the suppression 
of Th2 atopy conditions through this process. Although 
studies of immunological processes have advanced, 
monocyte immune function and the positive aspects of 
the human immune response system caused by viruses 
have not been widely examined. Moreover, IL-12 was dis-
covered as a key immunoregulatory cytokine in various 
infections and is effective in fighting a wide range of vi-
ral infections [38, 39] and may promote a Th1 response 
and regulate Th1 stability [40]. As shown in our atopic 
mouse experiments with bacterial components of Strep-
tococcus pyogenes [41], IL-12 was amplified. It has been 
confirmed that depending on these bacterial infections, 
an IL-12 inducer of the defence process exerts effects on 
Th1 conditions. In human varicella infection, Fujimura  
et al. [24] showed that a switch from Th2 to Th1 regula-
tion occurred, supporting observations of atopic derma-
titis improvement after varicella infection. Thus far, HZV 
may have contributed to the switch to Th1 dominance 
[24]. In such lesions, expression of Th1 type cytokines 
predominated [24], suggesting downregulation of Th2 
dominant AD conditions. They also pointed out that 
IL-12 may regulate the switch of the recall response of 
allergen-specific T cells of atopic donors from a Th2- to 
a Th1-like phenotype in vitro [24]. Although the detailed 
mechanisms remain unclear, immunity is known to de-
cline with age [42] and in those with cancer or various 

Figure 1. Schematic representation of infectious diseases 
caused by HZV and HSV
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infectious diseases, and the side effects of drugs [43] are 
often observed in the elderly. These accumulated findings 
suggest that the deficiency in the immune response due 
to ageing and diseases such as atopy can be repaired 
and normalized despite a temporary immune response 
to protect against infection caused by HZV.

Immunoregulatory events in HSV infection

In HSV infections, the type I interferon (INF-a and β) 
signalling pathway [44] plays an important role in the in-
nate immunity [45, 46] along with activated neutrophils, 
monocytes, macrophages, and dendritic cells (DCs). DCs 
[47] are antigen presenting cells that are important for 
pathogen recognition at sites of infection and for priming 
of protective HSV-specific T cells [48]. NK cells [49] play 
an important role in the host response against viral infec-
tions being able to kill virus-infected cells. The control of 
Tregs may also maintain the delicate balance between 
inflammation and healing in controlling HSV infections 
[18]. It is likely that children with AD may be susceptible 
to HSV due to reduced numbers of NK cells and a de-
crease of IL-2 receptors, a marker for lymphocyte activa-
tion, during early eczema herpeticum [50]. HSV infection 
in vitro also has been found to up-regulate the expres-
sion of IL-12 (p40) mRNA as a triggering event that biases 
HSV-specific immunity to a type 1 T cell response [51]. Pa-
tients with Kaposi’s VE have impaired the type II interfer-
on (IFN-γ) production in the protective response to HSV 
[52]. The impaired INF-γ production may account for the 
abnormal immunopathogenesis of severe, intractable AD 
[11]. Patients with Kaposi’s VE (Figure 1) exhibit reduced 
IFN-γ production, which may contribute to an impaired 
immune response to HSV [11, 52]. Of note, some reports 
suggest that HSV increases the levels of Th2 cytokines, 
such as IL-4 [53] and IL-25 [54], which, in turn, promote 
HSV replication; in fact, IL-25 [54] was shown to promote 
HSV replication by inhibiting the expression of filaggrin, 
suggesting this protein as an aggravating factor in Ka-
posi’s VE. It has also been pointed out that CD14(dim)
CD16(+) monocytes [20] have a compromised ability to 
produce pro-inflammatory cytokines. Therefore, Kaposi’s 
VE is attributed to a decrease in the immune function 
of the skin of AD patients [8]. Nevertheless, improve-
ment in AD skin lesions of Kaposi’s VE cases suggests 
that immune response to HSV infection involves a spe-
cific immunomodulatory activating factor. On the whole, 
this field has not always been actively investigated. The 
authors have experimented with animal models to sci-
entifically support an observed clinical event. We have 
previously reported an improvement in AD-like lesions 
by UV-inactivated HSV 1 [55] in a murine atopy model 
(Nc/Nga mice), supporting a remarkable improvement in 
eczema lesions at the site of Kaposi’s VE. On the other 
hand, Kawakami et al. [56] described a relationship be-
tween defective NK cell activity and development of HSV 

1-induced severe skin lesions (eczema herpeticum) in ec-
zematous Nc/Nga mice. Herpes virus disease symptoms 
in patients with deficiencies in NK cell activity may result 
in life-threatening conditions [49]. Human plasmacytoid 
dendritic cells (pDCs) in the activation of NK cells control 
such herpes virus infections [47]. So far, NK cell activation 
[17, 47] could be induced by HSV in some individuals with 
improved atopic skin lesions. The difference between our 
previously reported results [55] and those of Kawakami 
et al. [56] is likely due to the use of different method-
ologies. In our study [55], 2 × 105 pfu UV-inactivated HSV  
1 per mouse was injected intra- and/or subcutaneously at 
six sites in the eczema skin lesions. Contrarily, in Kawaka-
mi’s experiments [56], 4.5 × 103 pfu (in a volume of 3 μl 
per site) of live HSV 1 per site was intradermally injected 
at four sites in the skin lesions. Although the dose of vi-
rus administered in the studies differed by a factor of 
10, the live and inactivated viruses induced completely 
different immune responses. Furthermore, there may be 
some difficulty in deciding on the appropriate dosage of 
live virus for small laboratory animals. Dose-dependent 
differences in immune response must also be taken into 
account when comparing different studies [57]. We hope 
to further analyse the mechanism of eczema lesion im-
provement in Kaposi’s VE using the response against HSV 
infection.

Prospects of Th1 regulation by infectious 
pathogens

In our previous studies [41, 55], we have shown 
through animal experiments that allergic dermatitis can 
be alleviated not only by these viruses [55] but also by 
S. pyogenes components, such as OK-432 [41]. Findings 
[58] in support of this result have already been shown. 

These pathogens may have components that induce 
immunological events contributing to Th2 to Th1 shifts 
[41]. While the severity of the immune response in infec-
tious diseases is important, humanity has succumbed to 
numerous infectious agents despite the development of 
vaccines [28]. Although the results of animal experiments 
cannot be immediately reproduced in humans, they have 
been evaluated continuously to increase their applica-
bility in humans later on. Therefore, we will continue 
to study the benefits of the immune response in some 
infectious pathogens. There is also a worldwide need 
for immunological studies to ascertain the components 
of these pathogens that can suppress or improve the 
symptoms of allergies. If these beneficial components of 
pathogens are found, it may be possible to replenish and 
improve atopic and age-related immune dysfunction and 
maintain patients in a stable condition. Further advances 
in this field will require identification of the molecular 
components of pathogens [59] that determine the direc-
tion of immune response and act as suppressors of al-
lergic dermatitis. Lundberg et al. [59] reported that HSV 
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DNA or HSV-derived oligodeoxyribonucleotides (ODNs) 
can induce the production of inflammatory cytokines, 
such as IFN-γ, which regulate Th1 response. Moreover, 
the augmentation of Th1 responses by bacterial cellular 
components such as lipopolysaccharides (LPS) in Gram-
negative bacteria and peptidoglycans and lipopeptides 
in gram-positive bacteria, has also been highlighted [59]. 
As our study using components of S. pyogenes showed, 
lipoteichoic acid-related molecules [60] induced improve-
ment of AD-like skin lesions in Nc/Nga mice. AD cases 
effectively treated with S. pyogenes bacterial extracts, 
such as OK-432 [61], have been previously reported. 
T lymphocytes recognize VZV glycoproteins (gpI-V), the 
immediate early/tegument protein, and the product of 
gene 62 (IE62) [62]. Thus far, identification of herpes 
virus components regulating such Th1 shifts are yet to 
be elucidated. Alternatively, the attenuated VZV vaccine 
(Oka/Merck) and inactivated zoster vaccine, prepared by 
heat or irradiation, recruit amplification of VZV-specific 
T-cell mediated responses with the enhancement of the 
vaccine-induced IFN-γ [63]. It may be worthwhile not only 
to use vaccines as protection against infection, but also 
for immunostimulation with Th1 induction. This may be 
effective in elderly people [42, 63], whose immune re-
sponse has declined due to age. In atopy patients [64], as 
reported by Foerster and Molęda [65], vaccine targeting 
IL-13, a Th2 cytokine, may prove beneficial. 

Conclusions

From the accumulated findings discussed here, both 
HZV and HSV may induce Th1 regulatory events along 
with the protective immune response to infection, al-
though HZV appears to induce more systemic immunos-
timulation. HSV appears to be a local response in affected 
skin lesions. To date, great progress in immunopathologi-
cal analysis in allergic diseases and AD has been made, 
but much work remains to elucidate the mechanism un-
derlying this phenomenon and establish a reliable and 
safe treatment strategy. Induction of Th1 response by 
these viruses should be evaluated to improve the com-
plex immune responses induced by the mobilization of 
Th1-regulating cytokines such as INF-γ and IL-12, to im-
prove the symptoms of Th2-dominated AD. Although it 
is also true that these viral infections are nearly always 
harmful, there are rare cases in which atopic eczematous 
lesions improve upon exposure to these viral infections. 
However, it is possible that immune responses to the 
infectious agent may vary among individuals. Analysis 
of the immune events induced by these viral infections 
would provide novel insights for atopic therapy. It seems 
reasonable to suppose that infectious pathogens are not 
necessarily all bad, and further analysis in this field is 
required to uncover the potential therapeutic benefits of 
some pathogens.
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